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1. INTRODUCTION

The need to study and understand electromagnetic wave propagation

and scattering in anisotropic media arises in such diverse areas

as optics, plasma physics, geophysics, antennas and remote sensing. In

some cases anisotropy occurs as an undesirable parasite; in some

others it is intentionally introduced to serve some special purpose.

Naturally occuring anisotropic materials which are of practical use

are very few (e.g., crystals). But thanks to the recent advances in

materials technology, a wide range of anisotropic materials with

diverse characteristics are readily available today. Alongside,

several novel applications of anisotropic materials are being

continuously invented [Kobayashi and Terakado, 1980; Paul and

Shevgaonkar, 1981]*12

One of the well-established tools for the analysis of electromagnetic

radiation and scattering problems is the method of Green's functions [Tai,

1971]3. There have been a few investigations in the literature dealing

with the dyadic Green's function for anisotropic media. But they are

either restricted to the uniaxial case [Lee and Kong, 1983]' or only

suitable to certain special applications [Krowne, 1984a and 1984b], 6 .

Krowne [1984b]6 has found his DGF to be very useful in problems such as

electromagnetic field analyses of integrated circuits on anisotropic

substrates. Although in the literature there are papers devoted to

electromagnetic scattering from anisotropic media of very general type

[Graglia and Uslenghi, 1984]7 we are particularly interested in analyses

which can offer some physical insight into the scattering mechanisms in

anisotropic media. With these in mind we seek to obtain the DGF of a two-
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layer biaxially anisotropic medium whose principal axes can have any

arbitrary orientations. There are several steps involved in our procedure.

First we obtain the DGF for the unbounded problem. We next formulate the

DGF for the two-layer problem, express the coefficients in terms of half-

space Fresnel coefficients and finally evaluate the various half-space

Fresnel coefficients. In this report we confine ourselves to the task of

deriving the DGF for the unbounded case. Extension of this work to the two-

layer problem will be treated in another report.

The contents of this report are organized as follows. Section 2

describes the formulation of the problem. In the next section we

derive the DGF of the unbounded biaxial medium. In Section 4 we have

a discussion of our result and the report concludes with a brief

summary in Section 5.

2. FORMULATION OF THE PROBLEM

The geometry of the two-layer problem is shown in Figure 1. It

consists of three regions - Region 0 ( z > 0 ) is an isotropic medium

with permittivity c0' Region 1 ( 0 > z > -d ) is the anisotropic medium

with permittivity 7 and Region 2 ( z < -d ) is an isotropic medium

with permittivity c 2* All three regions have the same permeability'p.

The permittivity of the medium in Region 1 is a second-rank tensor

whose matrix representation in its principal coordinates, 7(0), take

the following form.

0 0

7(o) - [ o (1)

0 0 z0
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In order to obtain the representation of 7(o) in the coordinate system

of our problem (x, y, z) we perform two rotational transformations.

Let x", y" and z" be the principal axes of the permittivity tensor.

Note that the normal to the boundary is not along any of the principal

axes in general. The first transformation (see Figure 2(a)) is an

anticlockwise rotation through an angle 01 about the x" axis. The

second transformation (see Figure 2(b)) is an anticlockwise rotation

through an angle #2 about the z' axis. Thus the representation of the

permittivity tensor in the (x, y, z) coordinate system is given by the

following symmetric matrix.

- [11 12 '13
. 12 22 23 (2)

13 23 33J

where

£11 - Cx Cos2 #2 + CC 2  +i sin2 01 ) sin2 # 2  (3a)

£12 - (- x +y Cy 2 1 + Ez sin2#l) sin #2 cos #2 (3b)

C13 - (C z - A ) sin i Cos 1 sin 02 (3c)

S22 - Cx sin 22 + (C y Co#l + cz sin2#1 ) cos 2 2  (3d)

'23 - (Cz - C ) sin 0i cos OI cos 02 (3e)

£33 - c sin2 0 + C Cos2 1 (3f)

4



We have an electric current source in Region 0 away from the

boundary. We are interested in finding the DGF's : GO00

a10 (*,') and U2 0 (rr). The second subscript denotes the region

where the source is located and the first subscript denotes the region

containing the observation point. In order to obtain the above DGF's

we need to solve the following equations [Tai, 1971]3

V x 0V x G - A C 0o G0 0 (?.?') - I 6(y - f') (4)

V x V x GIO(rr ) - 2 AGl 0 (rr) - 0 (5)

V x V x G(,r) - W A C2 G2 0 (r,r') - 0 (6)

where w is the angular frequency. The boundary conditions associated

with these DGF's are given as follows:

A u- - - A ..

z x G0 0 (r,r ) z x G 1 0 (,r) at z - 0 (7a)

zA x V x G00( ) z x V x Gi0(. ,') at z - 0 (7b)

A ( Az x G10 (f, - z x G20  ) at z - -d (8a)

A --- A -A
z xV x G1 0 (,f') - z x V x G2 0 (Y,r') at z - -d (8b)

We find this boundary value problem too complicated to attack head

on. Since most of the complications are due to the anisotropic medium

we first obtain the DGF of the unbounded anisotropic medium. This is

5



the problem we set ourselves to solve in this report.

3. DYADIC GREEN'S FUNCTION FOR THE UNBOUNDED PROBLEM

The DGF of the unbounded problem, Q(Y,Y'), satisfies the following

equation:

V X V X U(-f,')-f 2 A 7 T(,' 6(y - Y-) (9)

Although this equation is very similar to (5), the major

simplification lies in the absence of the complicated boundary

conditions (7) and (8). The only condition to be satisfied here is the

radiation condition.

Instead of seeking solution to (9) directly, we find it convenient

to first introduce an 'auxiliary' dyadic Green's function (ADGF) •(i,?')

which is linearly related to DGF (see (36)). As we shall see the

dyadic decomposition is easier to achieve for ADGF which satisfies the

following equation:

V XV X ; ;(Y) 26y 2- f (

where

x --

Now we define the following Fourier transform pair:

- J d3F •(Fr') exp (-ik.r) (12a)

I f d3k ;(k,'') exp (ik.) (12b)

Then in the Fourier domain, (10) reduces to the following algebraic

6



equation.

SX k x • •(k,? °) + W p (k -', ) - _ c exp (-ik.-') (13)

The solution to (13) is readily obtained as

- ;- [ + t ] Y E exp (-i k.?') (14)

where the matrix representation of I in the (x, y, z) coordinate

system is given as 0 -kz k y

k z -k x (15)

-k k o0

Substituting (14) in (12b), we get

1(~' (i) d 3k f adi ;~2  + w2 PT) [.e--..p(21det ; 2 + wl y]d ex

(16)

Factorizing det [ ;2 • + A ] ,,we obtain

det ;2 + -y W2 A C3 3 detx (kzkau)

. ( kzkadz ) ( kz-kbu ( k-kbd ) (17)

Here

(ku1
au J/ t- t2 (18a)

kadJ

7



kbuz "A- 1 +2 + (18b )
kbd 2

where A. I, 3D and Z are given in the Appendix. The superscripts a and

b refer to the two characteristic waves that exist in a biaxially

anisotropic medium. Hereafter we shall denote them as a-wave and b-

wave. The superscripts u and d denote the upward and downward

propagating waves, respectively. Note that Re kau and Re kbu arez z

positive while Re kad and Re kbd are negative. These are in agreement
z z

with our convention for upward and downward travelling waves.

Furthermore, we assume that the medium is slightly lossy so that

Re k i * Im k1 i, i - a or b and i - u or d. Hereafter in this paper we
z z

follow the above notation for ý and i.

From (16) and (17) we obtain

xYz [dk d k e ik *(P-P') eik Z(z-z')

(2X)3  W2/ f33 J O J p

ad K2 - + w2m T) (19)

(k -kau )(k kad)(k kbu)(k kbd(
(zz) z z 'z z z

We now perform the integration in (19) over k . The integration isz

from -® to +- along the real axis. There are four poles in the complex
,at kau kad kbu and kbd. The poles at kau and kbu

k plane, viz., z z z z z zzz

lie in the first quadrant while the poles at kad and kbd lie in the
z z

third quadrant. For z > z' we deform the integration contour in the

upper half-plane and this contour encloses the poles at kau and kbu
z z

8



Using Cauchy's theorem the following result is readily obtained.

For z > z'

CY z d2
(2*) 2  Co2/1 C 3 3  p

au au A+ A+
g a a ~~exp[ia(-')

S(kau - ad)(k au k bu )(kaukbd
z z z z z z

SAbu gbu r + r -(+x
+(kbu kau)(kbu kad)(kbU kbd) exp

z z z z z z

(20)

where

Aa A Aa A

hu [ •axA 1  +Iax°A ] (21a)

A Ab A Ab Ab
S1 [ x(kxo) k x(k x 0 2)2 )

bu Ab+ Ab A(21b)

h 1Xo1I Ik xo 2 1

Pu a or (22)

- (kf)2
u - ) (23)W,21A - (k )2 x ýU

1

g*U - (k•') 4 ( X )2 + [ - (1k5)2 x ]2 (24)

9



1 ). A Af( 
5h ru - 2 1 + k AC x^ / (25)

1k x lk x o 2 1

k kI (26b)

kc- l 1 y (26b)

xj -(x1 1 -±2 g) cos e2 g sin 1osin#

01

0 - x gl csn 02 + g2 s0 1 o 2 +^

+ y : g I in 0 + g2sin 0 cos 02+7 Cs01 (27)

gl _[ •z(cV- c x) ]1/2(2a
Sy (c z- c x)(2a

[ Cx(c z- cy) 1/2(2b
g2 - c (c285)

ýu si U Cs20N-2 sin ýu Cos ýu (29a)

Xl Co aXC sin2 4• 22cs u Co 2 XI2

x2 -XIl - X22

+X 12 Cos 0 ýu {sin 2 0ýu_ Cos 2 ýu

+ ( X23 Cos cu _ X13 sin 0 u sin 0 ýu (29b)
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Xij is the i. th element of the matrix X ; the angles (u u )
A

denote the direction of k . For definiteness we have assumed in the above

equations that cX < c < .x y z

For z < z' we deform the integration contour of (19) in the lower

half-plane thus enclosing the poles at kad and k bd. Once again, use of
z z

Cauchy's theorem leads to the following result.

For z < z'

i x YzC z d2i
(2w) 2  W 2p C33 P

Sad ad A-fA g a CL ex a- ••)

1 (kad kau)(kad kbu)(kadkbd)exp
z z z z z z

Abd bd A- b

(k -k )(k )(bd .au. bd ad bd .bu. ez z z z z z

(30)

where

Aa A Aa AA-- It •Xl 0X °02 ]
a'XO la 2 (31a)

ad Aa A Aa
h Ix oll IX X o21

Ab AbA Ab AbA[X x(oc X _0) c x (K x 0 2)lb
1-- I.. + (31b)

A l[ Ab A + Ab A ](3b
S IX x oll I1C x 0 21

11



A + A rd a or (32a)
p z

Ar - • -CMII , (32b)

A d ACu u - d (33)

.r 9 u - d} (34)

N~ ChU u.d (35)

Now that we have derived the ADGF •(FF'), it is straightforward to

obtain the DGF •(jj). On post-multiplying (10) by • and comparing it

with (9), we deduce that the DGF is linearly related to the ADGF as

)- ; ; (36)

Thus the DGF for the unbounded problem is finally written as follows.

For z > z'

i x y z d2i
(2w) 2  W2 p C33 P

f au au au A+ A+
f V A g aa -exp[ia(-•)

" (k au kad)(k au-kbu)(kaukbd)
z z z z z z

+ bu Abu bu t+t+ [b+
(kbu au.ka bu ) ad. bubd exp ad}b°k -r'

z z z z z z

(37)

and for z < z'

J2



1. Jr € I.X y c z -d2

(2w) 2  
W2p C33 p

{ ad ad ad A--A-
A g a a -

ad kau)kad kbu )(kad bd. exp ia. f-f')]
(ka -k au)k-z z z z z z

+ ,Ld A bd d g- g-
( ,kbd au bd ad bd bU exp }

z z z z z z

(38)

where

+ (LU) -1/2 A+

A- (ad -1/2 A-

a * CL (39b)

+ (IvU) -1/2 - A+ (40a)

9- -(vd-1/2 ( • 40b)

u + -2 AA
2 - x • , - a or b (41a)

td A -2 A--
' -L x " " - , -a or b (41b)

13



4. DISCUSSION

Having now derived the DGF of the unbounded biaxially anisotropic

medium, it will be instructive to study some of its characteristics.

First we compare our DGF with those of a corresponding uniaxial

4problem [Lee and Kong, 1983] . We notice that our result is identical

in structure to theirs. The most important difference is that in the

place of ordinary and extraordinary waves we have a- and b- waves.

In order to study the characteristics of a- and b- waves we first

examine the dispersion equation

det [ ;' 7+ 2 , T] -o0 (42)

When we solve (42) for k we have found in (18) that there are fourz

solutions. However, when we solve (42) for k2 we find that it has two

solutions, viz., (ka)2 and (kb ) 2, where

a)2 wt__2+ t2 4 a 1 (43a)(k) 2 [ta + a
aa

(kb - [ -t, 2 1/2 ] (43b)

- Ar Ar

E- Ex E ) k k (44b)

a b

It is clear from (43) that the propagation constants ka and kb e -

14



functions of the direction of propagation. This implies that both a-

and b- waves belong to the extraordinary category.

But when we let cx - cy and -2 00, (43) becomes

(ka)2 2 (45a)

(k-) -o2 + (k ) (45b)

z

(k)2.• z - Cz/x

We now see that k is dependent on the direction of propagation while

ka is not. Thus in this special situation the a-wave is an ordinary

wave and the b-wave is an extraordinary wave. This is a well-known

result of a uniaxial medium.

Further we note from (18) that the magnitudes of the z-component of

the propagation vectors are different for upward and downward

travelling waves, i.e., Ik u o • 1z. This is true in a general case.z Zi

But there are situations where these magnitudes become equal. One such

situation occurs when the principal axes of the medium coincide with

(x, y, z), i.e., when 1-2 - 0 . In this limit we note that A - R -

0. Thus it is clear from (18) that z-components of the propagation

vectors of the upward and down..-:U* cravelling waves are equal in

magnitude but opposite in sign. This result is intuitively satisfying.

We next turn our attention to the polarization vectors. We note

A A-
that our a. and t correspond to and DII in Njoku [1983]8 and Kong

(19751. They have denoted the characteristic waves as type I and type

II waves. We further notice from (21) that for a specified propagation

Aa Ab A+ A+
direction (k k 0. A similar result has been reached by

Kong (1975]9 and Njoku (1983] by a different method. Also from (21) and

15



(40a) we obtain that a 0.

Although a and + are orthogonal, it is interesting to note that

a and 9+are not, in general, orthogonal to each other. For we find

A A A A
from (39) and (40) that 'a- 9'- 0 only if k x 01b ± (k x 02). This

A+implies that a and are orthogonal only in the special situation
A A A

where k either lies in the plane bisecting the angle between o1 and 02

or is normal to the bisecting plane.

On the other hand, in the case of a uniaxial medium the

corresponding vectors are always orthogonal [Kong, 1975; Lee and Kong,

1983] '4. In order to clarify this apparent difference we proceed as

follows. First we take the uniaxial limit of our results. In this

limit we note from (45) that (k a)2 - (k )2 and (kb)2 - (k e)2. The

superscripts o an e refer to the ordinary and extraordinary waves as

in Lee and Kong [1983]4. Further (27) and (21) reduces to the following

limiting values.

A A A A
01- - y sin #I + zcos (46)

A0 A
+ °kx oC - A0  (47a)

Ae Ae A
k x(k xo1)1 A(47b)

Also in this uniaxial limit

A+ A+a -^+ (48)

Since we have seen earlier that C + 0, it follows that a. + 0

16



always in the uniaxial limit. Thus all the properties of the uniaxial

medium fit logically well within the framework of the biaxial medium.

This completes the first part in our derivation of the DGF's of

the two-layer biaxially anisotropic medium. In the second part [see also

Mudaliar and Lee, 1991] we extend this work to the corresponding two-

layer problem. The most important merit of this DGF lies in the
4

repesentation. Similar representation [Lee and Kong, 1983] has served

us well in studying and analyzing various scattering problems in

uniaxially anisotropic random media [Lee and Kong, 1985; Mudaliar and

Lee, 1990] 1112 It is expected that the DGF derived here will serve

similar purposes in radiation and scattering problems involving

biaxially anisotropic media.

5. CONCLUSION

Due to numerous applications in various areas anisotropic medium is

demanding increasing attention in recent years. Since dyadic Green's

function (DGF) is a basic tool for analysis, we seek to derive the DGF

for a biaxially anisotropic two-layer medium. To this end we derived in

this paper the DGF for an unbounded anisotropic medium whose principal

axes are arbitrarily oriented. The Fourier transform method was used to

derive an auxiliary dyadic Green's function (ADGF). The DGF was then

obtained by performing a linear transformation on the ADGF. Some

properties of the characteristic waves, viz., the a-waves and the b-

waves, were studied. Our representation of the DGF demands particular

attention. Besides its compact structure it also has physical

correspondence to the two characteristic waves in the medium. In the

17



uniaxial limit our results agree well with those in the literature.

Extension of this work to the two-layer problem will be discussed in

another report.

18
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APPENDIX

A 2(kx £13 + k c23)/33 (Al)

R- (A-- - b + s)1/2 (A2)

3 -_ 2 -- 2b ( - if 3t 0 (A3)

l - [ - _ 2b ± 2(s2 - 4d)I/2]1/2 if R - (A4)

where

b - (mla2+ cl+ alm2+ k b3+ p2 (A5)

(1a2  1 1 2 x 3~ 13)/P33

c - (mlb2+ b1m2+ kxc3+ b3P13)/P33 (A6)

d - (mIc 2 + cIm2+ c3 P1 3 )/p 3 3  (A7)

ml -kxky+ P1 2  (A8a)

m2 - k2 p1l (A8b)

PiJ - , (i, j) - (1,2,3) (A9)

a 1 P33 - k x2 (Ala)

b - 2ky P23 (AlOb)

c1  2P3 - (k: - P2 2 )(k 2 - P 3 3 ) (Al~c)
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2 - kxky (Alla)

b2 - kxP2 3 + kyP1 3  (Allb)

c 2 - P1 3P2 3 +(kk + P12) (k2  -p 2 3) (AIlC)

b3 - k (k2 - P22) + k m (Al2a)

c3 - - P2 2 ) (Al2b)

B 2 A31/2 1/3 B 2 A3 121/3 b

s- - + (_ + )A + [ (_ L_1/ + - (A13)

A - 1 (3q - b) (Al4a)
(3q

B - -L (-2b 3 + 9bq + 27r) (Al4b)

q - Ac - 4d (Al5a)

r - - Ad 2 + 4bd- C 2  
(Al5b)
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MLSWON

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary
program in research, development, test, and technology
transition in support of Air Force Command, Control,
Communications and Intelligence (C31) activities for all
Air Force platforms. It also executes selected
acquisition programs in several areas of expertise.
Technical and -engineering support within areas of
competence is provided to ESC Program Offices (POs) and
other ESC elements to perform effective acquisition of
C31 systems. In addition, Rome Laboratory's technology
supports other AFMC Product Divisions, the Air Force user
community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research
programs in areas including, but not limited to,
communications, command and control, battle management,
intelligence information processing, computational
sciences and software producibility, wide area
surveillance/sensors, signal processing, solid state
sciences, photonics, electromagnetic technology,
superconductivity, and electronic
reliability/maintainability and testability.


